

Computer Systems Research

Sandeep Chandran, CSE, IIT Palakkad

Computer Systems

Infrastructure building Think of building roads (instead of Burj Khalifa!)

- Performance
- Power/Energy efficiency
- Security
- Reliability
 - Verification

Overview

Hardware

CPU/GPU/FPGA/Accelerators Design, Design Automation, Security

Hardware is for Electronics Engineers!

Hardware Design is done using tools and we need CS knowledge to build those tools

Hardware is for Electronics Engineers!

Hardware Design is done using tools and we need CS knowledge to build those tools

Takeaway 1: Research has no stream! (but only expertise)

- Shrinking transistor sizes over the years enabled a large diversity of devices
 - Multi-core CPUs
 - o GPUs
 - FPGAs, Custom Accelerators (Domain specific accelerators)

- Shrinking transistor sizes over the years enabled a large diversity of devices
 - Multi-core CPUs
 - o GPUs
 - FPGAs, Custom Accelerators (Domain specific accelerators)
- Transistors are already very small
 - O GHz clock speed ≈ Light travels only 4 inches

- Shrinking transistor sizes over the years enabled a large diversity of devices
 - Multi-core CPUs
 - GPUs
 - FPGAs, Custom Accelerators (Domain specific accelerators)
- Transistors are already very small
 - O GHz clock speed ≈ Light travels only 4 inches
- Future performance or Energy efficiency improvements
 - Better system design and architecture
 - Better tools (HL-HDLs, Synthesis Tools)
 - Security
 - Mitigate side-channel attacks
 - Enclaves

i1:	0x488d36:	and	eax, 0x8000
i2:	0x488d3b:	jne	0x488d93
i3:	0x488d3d:	mov	rdx, QWORD PTR [rdi+0x88]
i4:	0x488d44:	mov	r8, QWORD PTR fs:0x10
i5 :	0x488d4d:	cmp	r8, QWORD PTR [rdx+0x8]
i6 :	0x488d51:	je	0x488d8f
i7:	0x488d8f:	add	DWORD PTR [rdx+0x4], 0x1
i8 :	0x488d93:	mov	<pre>rax, QWORD PTR [rbx+0x8]</pre>
i9 :	0x488d97:	cmp	<pre>rax, QWORD PTR [rbx+0x10]</pre>

Execution without branch prediction

i1 i2 i3 i4 i5 i6 i10 i11 i12 i13	i14
-----------------------------------	-----

Execution with CORRECT prediction

i1	i2	i3	i4	i5	i6	i10	i11	i12	i13	i14

i1	i2	i3	i4	i5	i6	i7	i8	i9	i10	i11	i12	i13	i14
----	----	----	----	----	----	----	----	----	-----	-----	-----	-----	-----

Branch Predictor Designs

Algorithmic

- Counters
- History Tables
- Lookup and update rules

ML-Based

- Perceptrons (2001)
- Q-learning based

Branch Predictor Designs

Algorithmic

- Counters
- History Tables
- Lookup and update rules

ML-Based

- Perceptrons (2001)
- Q-learning based

Takeaway 2: Solutions to challenges could be from any (sub)domain!

- Methodology and Tools
 - Workload Characterization (DynamoRIO, QemuTrace)
 - Simulations (Gem5, Tejas, Sniper, GPGPU-sim, mcpat, Hotspot)
 - Modeling (SystemC, Bluespec, Chisel, Clash)

- Methodology and Tools
 - Workload Characterization (DynamoRIO, QemuTrace)
 - Simulations (Gem5, Tejas, Sniper, GPGPU-sim, mcpat, Hotspot)
 - Modeling (SystemC, Bluespec, Chisel, Clash)
- Conference/Workshops/Schools
 - Computer Architecture Winter School (CAWS)
 - ISCA, HPCA, MICRO, ...
 - DAC, DATE, ICCAD, ...
 - VLSI Design, HiPC

Research in Operating Systems

Research Topics:

- OS Design
 - Performance improvements (better VM implementations)
 - Managing Non-volatile Memory (NVMs) and hybrid memory systems
 - Power/energy management
 - Virtualization
- Correctness
 - Race conditions (in-GPU, in-distributed systems)
 - Automatic bug detection techniques
- Consistency in Storage systems (think filesystems)
- Security

Research is now closely tied with formal verification methods

Research in Operating Systems

- Tools/Frameworks
 - Most operating systems are open-source
 - Linux, FreeRTOS
 - Qemu, VirtualBox
- Conferences/Workshops
 - OSDI, SOSP, ASPLOS, Usenix conferences, ...
 - Summer workshops in the country

Research in Compilers

- Explosion in heterogeneity of computational machines
 - Multi-cores, GP-GPUs, Domain Specific Accelerators
 - Distributedness (Data-center and HPC workloads)
- Multiple objectives (guaranteeing correctness)
 - Single-thread performance
 - Auto parallelization
 - Energy optimization
- Explosion in programming languages
 - New classes of applications
 - Domain-specific languages

Research in Compilers

- Tools/Frameworks
 - o LLVM
 - ApacheTVM
 - o SeaStar
 - MLIR
 - GCC
- Conferences/Workshops
 - POPL, PLDI, ASPLOS, CASES, ...

Research in Networks

- Number of networked devices have increased manifold
 - Managing networked devices
 - Managing network policies
 - QoS guarantees
- Infrastructure-free networks
- Vehicular networks, IoT
- Security
- Network forensics

Research in Networks

- Techniques/Tools/Frameworks
 - Queueing theory, Game Theory, AI/ML
 - Kali Linux
 - NS3, OpenFlow
 - WireShark
 - IoT
 - Arduino, NodeMCU, Raspberry Pi, ...
 - Dockers
- Conferences/Workshops
 - Usenix NSDI
 - INFOCOM, GlobeCOM, NCC,
 - Comsnets, SIGCOMM

Research Spectrum

- Only 20-25% of Computer Systems PhDs are in Academia (rest are in the industry)
 - Industry for Computer Systems researchers is (largely) recession-proof as well as future-proof
- State-of-the-art
 - Latest and greatest system available
- Industrial research is 3-5 years ahead of state-of-the-art
 - Translational in nature
 - Directions governed by profits
- Academic research is several years ahead of the state-of-the-art
 - Reasonable assumptions about future
 - Never decoupled from Industrial Trends

Skills Necessary

- Programming
 - Version control (git)
 - Competitive programming (not sufficient)
 - Modular, Readable programs
 - Familiarity with a framework is an added advantage
- Techniques
 - Algorithms, Logic, AI/ML
- Patience! (and plenty of it)

Your Journey Starts Here!

<u>sandeepchandran@iitpkd.ac.in</u> +91 4923 226 388 https://iitpkd.ac.in/people/sandeepchandran

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**